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Abstract S

The rate at which scientific data is collected today has overwhelmed the ability of
scientists to store and analyze the data. This report describes the results of a three year effort in
the development of a knowledge discovery system for use by oceanographers at the Naval
Oceanographic Officce (NAVOCEANO) at the Stennis Space Center in the identification of
provinces of interest in the ocean floor from acoustic imagery. The system is composed of a
knowledge discovery component built to interact with a database system currently in use at
Stennis Space Center. The knowledge discovery system applies machine learning techniques to
features extracted from sonar images to identify provinces of the ocean floor based on visual
texture. This requires that the images be segmented into regions of homogeneous texture using a
region-growing technique, that features describing the texture of these regions be extracted, that
machine learning techniques be applied to classify the regions, that classified images be
constructed for visualizing the results, and that the classified images be combined and geo-
referenced using a mosaic procedure. NAVOCEANO is currently supporting efforts to integrate
the software developed from this project with their image analysis system.

1. Introduction

Fayyad, Piatetsky-Shapiro, and Smyth (1996) describe the knowledge discovery problem
as the need to develop “a new generation of techniques and tools with the ability to intelligently
and automatically assist humans in analyzing the mountains of data for nuggets of useful
information.” The goal of this project is to develop a knowledge discovery system consisting of
an oceanographic database and the tools needed to support the automated extraction of



information from the database. Such a system will aid oceanographers in the analysis of
complex oceanographic data sets that are too large to be analyzed manually. This work involves
the development of knowledge discovery tools that aid oceanographers in their data analysis
tasks and mechanisms for storing the discovered knowledge in an existing oceanographic
database. This work is being done in collaboration with scientists at the Naval Oceanographic
Office at the Stennis Space Center. The scientists at NAVOCEANO at Stennis who have been
our primary collaborators are:

Martha Head Oceanographer

Steve Lingsch Supervisory Oceanographer (Division Head NAVOCEANO N95)
Dr. Peggy Haeger ~ Oceanographer (Specialty in Acoustics and Hydrography) N95
Mollie Haynes Geologist N531

Chris Robinson Senior Scientific Applications Computer Scientist N95

Chuck Martin. Computer Scientist N95.

Geologists at NAVOCEANO currently manually classify regions of the ocean floor from
very high resolution sonar images. The work is very tedious and error-prone. The scientists at
NAVOCEANQO are interested in a knowledge discovery system that can aid in this “provincing”
process and that can be used as the images are collected at sea. We are working with them to
develop a prototype knowledge discovery system that uses acoustic imagery and other data to
province the ocean floor.

2. The Oceanographic Database

Although we initially established the design and implementation of the object-oriented
oceanographic database as the first major task in this project, this approach was abandoned for
two major reasons. First, the delay in ordering the object-oriented DBMS tool that we reported
in the first year caused us to concentrate on the knowledge discovery aspects of the project. This
delay, along with the encouraging results of our first year’s work on the knowledge discovery
component, have caused us to focus our efforts on the KD component. Second, we, in
consultation with the NAVOCEANO scientists, determined that it would be better to extend the
geographical information system already in use at NAVOCEANO to handle the new data types
rather than design a new database system. We have obtained and installed this system at our site
and have extended it to accommodate meta data and discovered knowledge.

3. The Knowledge Discovery System

The overall goal of the knowledge discovery system we are building is to aid the
scientists at NAVOCEANO in the analysis of large sets of complex oceanographic data. More
specifically, the scientists at NAVOCEANO wish to have a system that can use acoustic imagery
and other data to province the ocean floor. Geologists currently do this job manually. Our
system extracts texture statistics from acoustic images (collected from a 100 kHz Chirp Side-
Scan Sonar using a Data Sonics SIS1000) and applies clustering algorithms to identify classes of
textures. In our first year’s report, we described:

1) the knowledge discovery process that we are using including both texel-based and
region-based extraction of texture statistics,




2) sets of experiments that we conducted to select a parameters such as texel size and
number of classes for the texel-based approach,

3) the results of feature selection experiments,

4) the results of experiments comparing the texel-based approach and the region-growing
approach, and

5) techniques used to visualize the results of the classification.

Because the scientists at NAVOCEANO found the results from the region-growing
approach much more satisfactory than those from the texel-based approach, we concentrated our
second-year’s effort on refining and extending this approach. In the second year of our
research, our major focus was the application of the knowledge discovery process based on
region-growing to a much larger number of images. We conducted experiments to parameterize
the region-growing algorithm to make it applicable to a wider variety of images. We also
compared clustering results based on a Bayesian classifier (Autoclass) and a decision-tree
clustering algorithm (Cobweb), and investigated methods for parallelizing the knowledge
discovery process. Details of the work from the first two years was provided in the annual
reports. In this final report we will describe the current status of the knowledge discovery
process, we will discuss techniques that we have investigated for classification of sand wave
regions, and we report on-going related research efforts. = We also briefly describe our
development efforts that have been supported by NAVOCEANO to integrate our software into
their UNISIPS image processing system.

3.1 Current Status of the Knowledge Discovery Process

We have developed a knowledge discovery system that classifies provinces of the ocean
floor based on visual texture of acoustic images (Hodges et al. 1997; Karpovich 1998; Wooley
and Smith 1998; Bridges et al. 1999). The current system takes a set of acoustic images as input
and “clusters” regions of the images into classes based on similarity of visual texture of the scan-
line images. The classified scan-line images are then geo-referenced and combined using a
mosaic process as shown in Figure 1. Figure 2 gives a more detailed view of the provincing
process. The steps in this process are outlined below:

1. Preprocessing. Many of the acoustic images have a gray-scale range that is very
limited. In addition, the method of texture analysis that we use requires that the
images be quantized to a small number of gray-scale values. We use a Kohonen self-
organizing map to reduce the number of pixel values (quantization) while ensuring
that the range used adequately represents the variability found in the images
(stretching). Figure 3 shows an acoustic image and the same image after
preprocessing.
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Figure 1. Knowledge Discovery Process for Provincing a Set of Acoustic Images
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. Region growing. A region growing process is used to identify irregularly shaped
images of homogeneous texture. Regions are “grown” by analyzing the homogeneity
of small blocks called “cells.” If a cell is not sufficiently homogeneous, it is labeled a
“boundary cell” and will not be used in the clustering process. Otherwise the cell is
either combined with adjacent cells to grow an existing region or it is used to start a
new region. At the completion of the process, each region thus identified will be
considered one object to be classified (each referred to as an instance). Figure 4
shows the results of region-growing for a portion of one example image. This region-
growing process has two parameters (a boundary parameter and a region parameter)
whose values must be adjusted based on properties of the images and preferences of
the user for the granularity of the classification. We are currently investigating the
use of Bayesian networks to aid in the selection of good sets of parameters (see On-
Going Work).

. Gray-Level Co-occurrence Matrices. A gray-level co-occurrence matrix is computed
for each region for each of 4 different directions. These matrices provide information
about the co-occurrence of different pixel values. We typically quantize our images
to 16 gray level values using a Kohonen map and thus use 16 X 16 GLCMs. To date,
we have only computed GLCMs for a distance of 1. We plan to investigate other
distances as part of our work to distinguish different roughness categories.

. Second order textural statistics (feature extraction). There are a number of second
order statistics that can be computed from the gray-level co-occurrence matrices for
the regions (Haralick 1973; Reed and Hussong 1989). These statistics provide
quantitative summaries of textural properties of the images. The statistics that we are
using are: mean pixel value, standard deviation of pixel values, angular second
moment, correlation, entropy, contrast, and angular inverse difference moment. Each
of these values is referred to as a feature. Each instance (region) is described by a set
of feature values called a feature vector.

. Clustering. A clustering algorithm (Autoclass) is used to group the regions based on
the similarity of the textural statistics for each region. The Autoclass clustering
package that we are using is distributed by NASA Ames and implements a Bayesian
clustering algorithm. Figure 5 shows a visualization of the clustering results for one
image. We have performed experiments comparing the performance of several
different clustering algorithms and thus far have obtained the best results using
AutoClass. Clustering is a two-phase process. In the first phase, a subset of the
instances are used to “train” a classifier. We have found that we obtain better results
if we only use instances representing relatively large regions for the training process
that correspond roughly to the extent of regions of interest to the oceanographers.
During this phase, AutoClass learns probabilistic descriptions of the classes it
identifies in the images. After training is complete, these descriptions are used to
classify all instances (including those excluded because they were too small and those
representing “boundary cells”).




Figure 3. Original acoustic image and image after preprocessing.

Figure 4. Visualization of Region-Growing Results for a Portion of One Image.




Visualization. When clustering is complete, the classified instances must be used to
reconstruct classified images. This is a complex process that requires mapping from
classified instances to regions, from regions to cells, and finally from cells to pixel
values. Input for the process are the classified instances, the original image, and a file
that provides necessary mapping information. A gray-level is assigned to each class
(with gray levels distributed over the 0-255 range to assist visualization) and a gray-
level classified image is reconstructed. The individual classified gray-level images
are then ready to be geo-referenced and combined into a mosaic image. We have also
developed an additional utility to produce color images from the gray-level images to
facilitate visualization. Input for this utility is the gray-level image, the number of
classes in the image, and a color map. This tool can also be used to produce color
images of the mosaic images described below.

Figure 5. A Single Acoustic Image Before and After Clustering.




Figure 6. Mosaic of Original Images and Classified Images

After all of the images in a set have been classified they are geo-referenced and combined
using a mosaic process. We have adapted the mosaic process used by NAVOCEANO for use
with the classified images. Figure 6 gives the mosaic results for a set of acoustic images and the
classification of these images. We are currently investigating methods to provide a color




mapping that will cause texturally similar classes to be assigned similar colors to make the color
assignment more visually meaningful.

4. Identification of Sand Wave Regions

The knowledge discovery system described above finds classes of the ocean floor of
visually similar texture. It makes no attempt to identify the different classes. An aspect of
interest to our collaborating geologists at NAVOCEANO is the identification of sand waves in
the acoustic images. Our previous work focused on the identification of distinct textural regions
(provinces) in acoustic images through the use of unsupervised learning (clustering) techniques.
While this work has had success in distinguishing differing textural regions in an image, the
geologists must still manually classify each region as sand wave or non-sand wave—a very time-
consuming process. Our current work is to automate this classification process as well.

We compare the performances of several machine learning techniques for this task.
Particularly, we present results from the use of various styles of committee machines. While we
have seen some improvement in our classification system through the use of the various learning
techniques, we conclude that the current set of features do not accurately reflect the necessary
domain knowledge to make this classification system completely successful.

4.1 The Texel Marker Tool

So far we have used the same features for our instances for this supervised learning task
that we describe above for the unsupervised learning system. The supervised learning task
requires that a set of training data be developed which consists of classified instances. In this
case, we are dealing with a two-class problem where each instance should be classified as sand
wave or non-sand wave. We have developed a tool (written in Java) for users to use to build the
training and test sets for supervised learning. A screen-shot of the tool is shown in Figure 7.
This tool displays an image with a grid overlay of a size specified by the user. The user can then
use the mouse to select square regions of the image (called texels) and the user chooses a label
for the selected region sand wave or non-sand wave. The GLCM features described previously
are computed for the selected texels and these feature values along with the labels are output to a
file for use as input for the supervised learning system.
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Figure 7. Graphical User Interface for the Tool for Building a Training and Test Sets for
Supervised Learning.

One important point to note in this method of feature extraction is that the GLCM is only
calculated for a distance of 1 for the texels. This greatly limits the amount of contextual
information encapsulated within the features extracted. Through observation of human experts
classifying sand waves, it became apparent that humans use much more contextual information
in making their decisions than our current learning systems do.

4.2  Experimental Data Set

The data set used for the experiments presented here consists of 944 vectors, each with
22 features extracted from eight sonar images and a 1 or 0 classification for sand wave or non-
sand wave, respectively. For the supervised learning experiments, this set was divided into a
training set with 796 instances and a test set with 198 instances. This data was normalized to the
range of -1to 1.

4.3. Experiments, Results, and Analysis
4.3.1 Initial Explorations

For an initial exploration of the performance of traditional supervised learning techniques
on this data set, Quinlan’s C4.5 decision tree package (1992) was used. Unsurprisingly, C4.5 did
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not perform extremely well on this data set. It was hypothesized that since the training instances
consist of only continuous valued features, the general nature of a decision tree makes it
unsuitable for this task. Therefore, we next explored the use of back-propagation neural
networks using the NevProp system (Goodman 1998) as well as a C++ version of the back-
propagation algorithm implemented by Andrew Watkins. The performance of back-propagation
on the data set was better than C4.5; however, it was hoped that the accuracy could be improved
even more. To explore the possibility that the high dimensionality of the feature vector was
significantly affecting these various classifiers and the possibility that not all of the features were
necessary to truly represent what constitutes a sand wave, several feature selection algorithms
were applied to the data. These algorithms included RELIEF, SFS, SBS (Kira and Rendell
1992), and Branch and Bound (Narendra and Fukunaga 1977). While feature selection did
reduce the dimensionality of the feature vector, using these reduced features did not significantly
improve the accuracy of the classifier. Table 1 presents the best test set accuracy results for each
of these initial classification attempts. All results were averaged over three runs.

Table 1. Test Set Accuracy for Initial Classification Attempts

Classifier Type Decision Tree Back-Propagation (BP) BP with Feature
Selection
Test Set Accuracy 67.2% 72.03% 72.07%

As these results indicate, each new variation we tried did improve accuracy; however
these improved classifiers were still not as accurate as we had hoped.

4.3.2 Self-Organizing Maps

In an attempt to better understand the characteristics of the data set, we next turned to
self-organizing maps (SOM). When meeting the experts at NAVOCEANO, we noticed that they
quite often disagreed with each other about whether a given texel was a sand wave or not. With
this in mind, the initial motivation for the SOM experiments was an attempt to confirm the
classifications of the data made by experts. It was hoped that the union of certain clusters
identified by a SOM would correspond with the classifications made by the expert. Klimek’s
(1998) SOM implementation was used to explore this possibility. However, it was found that
the clusters did not come close to purely corresponding to the expert’s classes. In fact, an
individual cluster was either split evenly—responding to instances of both classes equally—or it
would respond around 80% of the time to the sand wave class. None of the clusters responded
strongly to the non-sand wave class. Since Klimek’s implementation was slightly limited in the
adjustable parameters, the more robust SOM_PAK (Kohonen, et al 1996) was explored. While
this package is useful in visualizing the data and the effects various changes in the parameters
have on the data, it does not allow for predictions the way that Klimek’s package does. Despite
this limitation, the use of SOM_PAK proved to be useful in our investigation of the data set.

We tried numerous combinations of the adjustable parameters available in SOM_PAK
and found that most of the variation produced no noticeable differences. Since Kohonen (1996)
asserts that a lower quantization error represents a “better” SOM, figures 8 and 9 present
different visualizations of the SOM produced when using 0.5 as the initial learning rate of the
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first part of the training and 0.09 as the initial learning rate of the second part of the training as
using these parameter resulted in the lowest quantization error. Figure 8 gives a view of the
labeled 15 x 10 matrix and gives a good indication of the distances between the different nodes

in the system. Figure 9 gives a slightly different view of the SOM and provides a visualization
of the different clusters of labels.

Figure 8. SOM Obtained from Using 0.5/0.09 as Learning Parameters.
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Figure 9. A Planar View of the SOM.

As both of these visualizations indicate, there are definite clusters of the two different
classes. However, not only are they close together, there are also several outliers which make
classification extremely difficult. Nevertheless, this phase of the investigation provided
encouragement for the classification system development process. Since there are distinct
clusters of similarly classified data items within the data set, we decided that it should be
possible to design a classifier to correctly identify sand waves in sonar images.

4.3.3 Committee Machines
The bulk of the experiments performed to date have involved the investigation of various

ways to combine base classifiers for the creation of an improved overall classifier. The basic
committee machine architecture is given in Figure 3.
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Figure 10. Basic Committee Machine Architecture

Five different methods of combining base classifiers were attempted: a simple ensemble
committee machine (Haykin 1999), bagging (Breiman 1996), a mixture of the original input
vector and the outputs from the base experts, the use of only the outputs of the base experts, and
the use of two randomly chosen base experts as a filter for the training set for the combiner
(Boggess 2000). For the simple ensemble and bagging experiments, the combiner in Figure 10
either used an averaging of the experts’ outputs or employed a voting scheme with each of the
experts’ votes being equally weighted. For the other three styles of committee machines, the
combiner was a newly trained back-propagation neural network. Except for the bagging
experiments, the base 1-N experts in Figure 10 were all back-propagation neural networks
trained on the same data set using different random initializations of the weights. For the
bagging experiments, the training set was chosen randomly with replacement. For the base
experts, the effect of varying the number of hidden nodes on the overall combined classification
was investigated. The numbers of hidden nodes used in the fully connected network were 8, 10,
12, 14, and 16. These architectures were chosen so as to provide a range of hidden nodes from
roughly one-third the size of the input vector to roughly two-thirds this size. For each of these
networks, a learning rate of 0.01 and a momentum factor of 0.5 were used. Each network was
allowed to train for 1000 epochs. Each of the networks had only a single layer of hidden nodes
which were fully connected to the input vector and output node. Each back-propagation network
architecture was run ten times with different initial conditions and, in the case of bagging, with
different training set distributions to produce the individual experts for the committee machines.

4.3.3.1 Simple Ensemble and Bagging

Table 2 gives the best results obtained for the bagging and simple ensemble experiments.
The first column indicates the number of hidden nodes in the ten experts’ architecture. Multiple
values indicate a combination of base experts. For example, the line with the ID value 10_14
indicates a combination of 20 experts, ten of which have 10 hidden nodes and ten of which have
14 hidden nodes. Columns two and three give the correct classification rate for the test set using
the averaging scheme for the simple ensemble and bagging, respectively. The final two columns
give the correct classification rate for the test set using voting types of combiners. All results
represent the average of three runs.
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Table 2. Results For Simple Ensemble and Bagging Style Committee Machines

ID ENS AVE BAG AVE ENSVOT | BAGVOT
8 72.73% 72.73% 73.91% 72.90%
12 72.22% 73.06% 73.74% 74.24%
14 72.22% 73.40% 73.23% 73.06%
10_14 72.73% 72.90% 72.73% 72.39%
12_16 71.72% 73.40% 72.56% 73.06%
ID=Number of hidden nodes in the base experts
ENS=Simple Ensemble; BAG=Bagging
AVE=Averaging; VOT=Voting

Table 2 reveals several interesting results. The most encouraging, from the view-point of
the classification system development, is that both simple ensemble style committee machines
and bagging style committee machines produced better results than had previously been obtained
through other methods. In looking at the comparison of these two types of committee machines,
bagging tends to outperform the simple ensemble. This could be due to the fact that, by
randomly choosing the training set distribution, each expert is forced to focus on different areas
of the input space. This new focus allows the individual experts to be more specialized, and then
the combiner reduces this specialized bias by averaging or voting without losing all of the
benefits of the base expert’s specialization. There are two interesting general trends indicated in
Table 2 that should be noted. First, the voting style of combining tends to perform better. It
appears that a more accurate classifier is produced by forcing each expert to make a 0 or 1
decision on the classification rather than a classification somewhere in this 0-1 range and then
choosing the majority classification of these experts. Secondly, having base experts trained on
different architectures does not seem to produce better results. In fact, if all of the experts are
trained with the same number of hidden nodes, then the resulting combined results are more
accurate. One possible reason for this trend is that, in the current experiments, use of differently
configured experts also entailed the use of more experts. This produces a greater degree of bias
that the combiner must attempt to reduce. We have not investigated keeping the number of base
experts consistent (i.e., at 10) but allowing each (or some fraction) of these experts to have
different hidden node architectures.

4.3.3.2 Other Committee Machine Schemes

In this section we discuss three different, yet related, committee machine schemes. For
the first scheme the output of the ten base experts was combined with the original input vector to
create a new input vector of 32 features. Through this approach, the neural network combiner
has the opportunity to learn which of the experts to pay attention to for different input patterns.
The second scheme is similar. For this style of committee machines, the input for the network
combiner was only the output of the ten base experts. The rationale for this approach was to
ascertain if the experts’ classifications alone contained enough information for the combiner to
successfully differentiate between the two classes in the sonar images. The final approach used
the classification of two randomly chosen base experts as a filter on the training set. The
combiner was trained only on input instances where the two experts disagreed. We hoped that

16



this would force the combiner to pay specific attention to input patterns that were difficult to
classify. Unfortunately, the resulting filtered training set was significantly smaller than the
original training set, which made it very difficult for the combiner to learn any general rules
applicable to the test set. The ten base experts used for these three schemes were the same ten
used for the 14 hidden node experiments in the simple ensemble averaging/voting trials. The
network combiner was trained across the same parameters as the original base classifiers, i.e., 8,
10, 12, 14, and 16 hidden nodes, 0.01 learning rate, 0.5 momentum rate, and 1000 epochs of
training. The combiner network was then tested on the entire original test set.

Table 3 presents the results obtained using these three schemes. The first column
indicates the number of hidden nodes in the network combiner. The second column gives the
test set results obtained when using the 10 base expert opinions combined with the 22 original
features. The third column presents the test set results obtained when using only the 10 base
expert opinions for training and testing. The final column gives the test set results for the filter
approach. All results represent the average of three runs.

Table 3. Results for Various Committee Machine Approaches

NUM Hidden
Nodes Features + Experts | Experts Alone | Filter
8 74.07 % 73.57% 50%
10 73.74% 73.40% 50%
12 73.91% 73.23% 50%
14 73.91% 73.57% 50%
16 72.05% 73.40% 50%

One of the most striking results presented in Table 3 are those results obtained from the
features plus experts scheme. In fact, when the network combiner had only eight hidden nodes,
the system produced results comparable to the best obtained to date. While this is encouraging,
it is not extremely surprising. By giving the combiner the additional information of the base
experts’ decisions, the system is able to produce a more robust opinion as to what constitutes a
sand wave. It is surprising to see that using only the trained experts’ opinions also produced
comparatively high results for the test set. This implies that the combiner network is learning
which experts to pay attention to based solely on their individual opinions without any additional
information as to the underlying input space. Perhaps unsurprisingly, the filter approach did not
perform well. This is probably due to the fact that there were only 100 training instances on
which the two base experts disagreed. For this approach to be more successful a much larger
training set to be filtered would be required so that the combiner would have more data items to
train on.

4.3.4. Discussion of Classification Results

The current set of experiments make a significant argument for the use of committee
machines in pattern classification. In general, we found that a combination of experts
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consistently provided our best results in the development of our system. Of particular interest is
the mixture of base experts with the original input vectors. This model allows the combiner to
learn which experts are reliable in the classification of different areas of the input space and to
take advantage of this additional information in the overall classification. However, despite
these interesting results, our current system is unable to accurately classify more than 74% of the
test set.

At this point in the development of our sonar classification system, the possibility that no
new strategy will result in a more accurate classifier must be conceded. It is possible that the
data is too noisy to be separated with any more accuracy than 74%, as even human experts often
disagree on correct classification. Another possibility, as Burl, et al. (1998) suggest, is that the
diversity of the negative examples could have an impact on the classification system. They also
emphasize, however, that in the development of a classification system, feature extraction is as
important, if not more so, than testing numerous styles of classifiers. After briefly meeting with
experts at the NAVOCEANO, it was evident that humans use numerous contextual clues present
in the image for correct classification. Therefore it seems likely that the features extracted from
the original images are not sufficient to encapsulate what experts are calling a sand wave. While
some contextual information is inherent in the current set of features, much more domain
knowledge could be imbedded in the decision making process. Of particular interest will be
expanding the GLCM distance from 1 to 5 or greater. This should provide more of the
contextual data that human experts seem to rely so heavily on.

5.0 On-Going Research and Development

The research focus established with this DEPSCoR grant is on-going. NAVOCEANO at
Stennis Space Center continues to fund work for 1) integrating our knowledge discovery system
with their image processing software and 2) extending the capability of our system to
characterization of the roughness of the provinces. In addition, three graduate students are
completing degrees (one Ph.D. and two Masters) in research initiated as part of this grant.

5.1 Integration with UNISIPS

UNISIPS is the image processing system developed by NAVOCEANO to support many
of their image analysis tasks including provincing. We are currently integrating a custom
Graphical User Interface extension into the existing NAVO tools. Figure 11 shows a screen shot
of a portion of this GUI. Our goal is to allow the geologist user base to utilize our processes
without detailed knowledge of the algorithms.
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Figure 11. Screen Shot of GUI to Integrate with UNISIPS

5.2 Roughness Classification

Section 4 above discusses our efforts to date to classify sections of the images into “sand
wave” and “non-sand wave” categories. We are working to improve the accuracy of this
classifier. In addition, our goal is to extend this work so that our system will be able to
automatically classify provinces into the roughness categories defined by Navy doctrine. Results
from the work that we have completed suggests that we need to consider the use of additional
features, particularly those that will provide more contextual information.

5.3 Scalable Knowledge Discovery

Our second annual report included an extensive discussion of work we have done in the
area of scalable knowledge discovery. The computational requirements of the algorithms used in
our knowledge discovery work and the size of the data sets involved have prompted us to
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investigate methods for parallelizing the knowledge discovery process. The methods we have
developed for parallelizing unsupervised learning algorithms are extensions of those proposed by
Chan and Stolfo (1995; 1996) for supervised learning. Three conference papers describing our
work in this area have been presented (Wooley, et al 1998; Wooley, et al. 2000a; 2000b). This
work is the focus of Bruce Wooley’s Ph.D. research. Further support for research in the area of
scalable knowledge discovery was provided by a Mississippi State University College of
Engineering Hearin Award and an NSF CISE Instrumentation Award (see section 9 below)..

5.3 Fuzzy Spatial Data Mining

The knowledge discovery work that we have described above focuses on identifying and
characterizing different regions of the ocean floor. We are also interested in building on this
work to identify relationships between different classes of regions after the regions have been
identified. We would like to be able to extract relationships such as “regions of class 1 are
typically found east of regions of class 3.” In order to do this sort of data mining, one must be
able to describe the directional relationships between individual regions and between groups of
regions. We are using an algorithm developed by Isabelle Bloch (1999) for finding the fuzzy
relative position of objects in image space. Bloch’s method works by computing a fuzzy
landscape for a reference object in a specified direction. This landscape gives the degree to
which each pixel in the image is in the specified direction of the reference object. Then one can
use fuzzy pattern matching to evaluate how well other objects match with areas in the fuzzy
landscape to determine the fuzzy relative position of the objects with respect to the reference
object. Bloch (1999) gives both an exact and an approximation algorithm for computing the
fuzzy landscape. We have found that the much more efficient approximation algorithm provides
sufficient accuracy for our data mining work.

From the fuzzy landscapes, one can identify the relationships between all possible pairs
of objects in a predetermined set of directions. We define R (m,n) to represent a binary relation
that says object m is in the direction o of object n. This is a fuzzy relation and so each element
has an associated membership value. We are interested only in elements of the relation whose
membership is above some specified threshold. We are developing methods to efficiently
compute these relations and to use the relations to extract rules that describe typical relationships
found among classes of objects in images. We are initially developing the methods using
synthetic data containing known relationships and will extend the work to classified image data.
George Brannon Smith is developing these algorithms as part of his Masters thesis.

5.5 Parameter Optimization using Bayesian Networks

Our knowledge discovery process is complex and requires that the user have some
understanding of a long sequence of algorithmic steps and how they interact in order to find the
best options and parameter settings for each step. We would like to provide the oceanographers
with an intelligent interface to the image-processing and data-mining software that will insulate
users from its complexity by automatically directing the discovery process and providing expert
guidance to assist the user. As a first step in the development of this intelligent interface, we are
investigating the use of Bayesian networks to represent causal relationships between different
options selected by the user. Also incorporated in the network is information about the goals of
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the user and about characteristics of the images under consideration. We have found, that for a
relatively simple task—selecting appropriate region and boundary thresholds for the region-
growing process—selecting the set of parameters with the highest probability of yielding a
“good” result only works about 50% of the time. We are exploring methods for finding a policy
that will allow the user to explore other options in the most optimal order. This research is the
Masters thesis of Sean Taylor. A new faculty member in the Computer Science Department at
Mississippi State, Dr. Eric Hansen, is also participating in this aspect of the research.

6. Summary

In this project, we have developed a knowledge discovery system to identify regions of
similar visual texture from sonar images. The work is challenging because the regions of interest
to the oceanographers at NAVOCEANO are characterized by very fine grain textural
differences, but the regions cover regions of large extent and the images are quite noisy. The
results of this work have been well-received by our collaborators at NAVOCEANO and we are
currently integrating our software with their image processing tools. We continue to investigate
methods for extending the capability of the system to classify regions by roughness according to
Navy doctrine. We are also extending the basic research done on the grant in several ways as
described above. Publications resulting from the project, students who have been trained as part
of the project, and other funding received to extend work on this project are listed below.

7. Publications Resulting From This Project

Bridges, Susan, Julia Hodges, Bruce Wooley, Donald Karpovich, and George Brannon Smith.
1999. Knowledge discovery in an oceanographic database. Applied Intelligence 11,
135-148.

Hodges, Julia, Susan Bridges, Bruce Wooley, Donald Karpovich, and Brannon Smith. 1997.
Knowledge Discovery in an Object-Oriented Oceanographic Database System. October
21, 1997. Mississippi State University Technical Report #971021.

Karpovich, Donald. 1998. Choosing the optimal features and texel sizes in image categorization.
In Proceedings of the 36th ACM Southeast Conference held in Marietta, GA, April 1-3,
1998. 104-107.

Klimek, Lee, Bruce Wooley, Susan Bridges, Julia Hodges, Andrew Watkins, Sara Smolensky.
1999. A comparison of the performance of a Bayesian algorithm and a Kohonen map for
clustering texture data. In Proceedings of the Artificial Neural Networks in Engineering
Conference (ANNIE '99) held November 7-10, 1999, in St. Louis, MO. 777-784.

Wooley, Bruce, Yoginder Dandass, Susan Bridges, Julia Hodges, and Anthony Skjellum. 1998.
Scalable knowledge discovery from oceanographic data. In Proceedings of the Artificial
Neural Networks in Engineering Conference (ANNIE ‘98), St. Louis, MO, November
1998.
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Wooley, Bruce and George Brannon Smith. 1998. Region-growing techniques based on texture
for provincing the ocean floor. In Proceedings of the 36th ACM Southeast Conference
held in Marietta, GA, April 1-3, 1998. 99-103.

Wooley, Bruce, Susan Bridges, Julia Hodges, and Anthony Skjellum. 2000a Scaling the data
mining step in knowledge discovery using oceanographic data. Accepted for
presentation at and publication in the Proceedings of the Thirteenth International
Conference on Industrial & Engineering Applications of Artificial Intelligence & Expert
Systems (IEA/AIE) June 19-22, 2000.

Wooley, Bruce, Diane Mosser-Wooley, Anthony Skjellum, and Susan Bridges. 2000b. Machine
Learning Using Clusters of Computers. In Proceedings of MPIDC2000 Message Passing
Interface and High-Performance Clusters Developer’s and User’s Conference, March 21-
23, 2000, Cornell University.

8. Students Trained as Part of the Project

Donald Karpovich. M.S. student. Graduated August 1999.

Lee Klemik. M.S. student. Graduated May 2000.

George Brannon Smith. M.S. student. Expected date of graduation December 2000.
Sara Smolensky. Undergraduate student. Expected date of graduation May 2001.
Sean Taylor. M.S. student. Expected date of graduation December 2000.

Andrew Watkins. M.S. student. Expected date of graduation May 2001.

Bruce Wooley. Ph.D. student. Expected date of graduation December 2000.

9. Other Research Support Resulting From This Project

1. Source: Naval Oceonographic Command, Funded by NASA
Title: Roughness Characterization of Provinces Identified from Acoustic
Imagery
Pls: Susan Bridges and Julia Hodges
Amount: $50, 000
Date: March 21, 2000 — September 30, 2000.
2. Source: National Science Foundation
Title: A Gigabit/s, VIA-Enabled Cluster Architecture for Research in

High Performance Systems Software, Scalable Knowledge
Discovery, Visualization, and Parallel Planning under Uncertainty

Pls: Anthony Skjellum, Julia Hodges, Lois Boggess, Susan Bridges,
Donna Reese, Raghu Machiraju, and Eric Hansen

Amount: $214,939

Date: July 1, 1999 - June 30, 2002.
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3. Source: Naval Oceanographic Office through NASA, Stennis.

Title: Province Identification and Classification in Acoustic Imagery
PIs: Susan Bridges and Julia Hodges
Amount: $97,984
Date: August 28, 1998 — May 30, 1999.

4. Source: Mississippi State University College of Engineering Hearin Fund.
Title: The Scalable Knowledge Discovery Initiative
PIs: Susan Bridges, Julia Hodges, Anthony Skjellum, Raghu Machiraju
Amount; $49,000
Date: August 16, 1997 — August 15, 1998.
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